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Abstract. Optimal observables are known to lead to minimal statistical errors on parameters for a given
normalised event distribution of a physics reaction. Thereby all statistical correlations are taken into
account. Therefore, on the one hand they are a useful tool to extract values on a set of parameters from
measured data. On the other hand one can calculate the minimal constraints on these parameters achievable
by any data-analysis method for the specific reaction. In case the final states can be reconstructed without
ambiguities optimal observables have a particularly simple form. We give explicit formulae for the optimal
observables for generic reactions in case of ambiguities in the reconstruction of the final state and for
general parameterisation of the final-state phase space.

1 Introduction

At a future e+e− linear collider (LC) like TESLA [1] or
CLIC [2], apart from the possible discovery of new particles,
electroweak precision measurements of various observables
will be an important task. In this way effects due to new
physics at a scale far beyond the produced c.m. energy
may be detected. The e+e−, the γγ, the e−γ, the e−e− and
the Giga-Z mode can reveal complementary aspects. For
instance, consider the three-gauge-boson vertices γWW
and ZWW , which are highly restricted in the Standard
Model (SM), see for instance [3]. In a form-factor approach
with the most general Lorentz-invariant parameterisation
these vertices are described by 28 real parameters if one
allows also for imaginary parts [4]. In many extensions of
the SM one obtains deviations of these triple-gauge-boson
couplings (TGCs) from their SM values; for an overview of
the literature see e.g. Sect. 1 of [5]. At present the experi-
mental constraints on these couplings from LEP are rather
weak and many couplings have yet to be measured [6–8].
At a future LC all TGCs can be measured with much
higher precision; see [9–11] and references therein. Both
longitudinal and transverse beam polarisation are consid-
ered to be feasible [12] and will be advantageous in many
cases; see for example [13]. For most TGCs longitudinal
polarisation is found to be the right choice [5], whereas
one coupling can only be determined with transverse po-
larisation [14]. In a gauge-invariant effective-Lagrangian
approach for the gauge-boson sector new-physics effects
can be parameterised by ten anomalous couplings [15,16].
In such a framework, after spontaneous symmetry break-
ing also gauge-boson–fermion interactions and gauge-boson
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masses are modified by the anomalous couplings. Therefore
constraints can be derived from observables measured at
LEP1, SLC and LEP2. Also in this case the couplings can be
determined with much higher precision at a future LC [16].

In all cases it is important to know how sensitive the
event distribution of a certain reaction is to a given set
of parameters, independent of the method that will be
used in the future to analyse the data. Moreover statistical
correlations should be taken into account, unless they are
very small, in order to provide realistic results. Frequently
one is dealing with a situation where the normalised event
distribution is – at least approximately – a linear function
of the parameters to be measured. The method of optimal
observables [9, 17] is most directly applied for the case of
a strictly linear function. In most parts of this paper we
assume that the event distributions are to good approxi-
mation linear functions of the parameters to be measured.
By means of optimal observables one can then compute
the maximum constraints on this set of parameters for a
given reaction and given event number while taking into
account all statistical correlations. Apart from being a
useful tool for theorists to estimate the sensitivity of a
reaction to a set of parameters optimal observables have
been used in experimental analyses to extract the param-
eters, for instance TGCs [6] or CP violating parameters
in e+e− → τ+τ− [18]. But also methods to handle non-
linear functions of the parameters to be measured have
been devised [10] and successfully applied in experimental
analyses; see e.g. [8, 19].

In case of many parameters with correlated errors, the
sensitivity to different directions in parameter space is of-
ten not easy to survey. Here optimal observables have the
advantage that discrete-symmetry properties of the differ-
ential cross section can be exploited in order to eliminate
correlations between couplings. For example the TGCs are
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classified into four symmetry groups, and couplings from
different symmetry groups can be measured without cor-
relations when optimal observables are used [9]. However
within each symmetry group couplings are in general cor-
related. In [10] it is shown that the optimal observables
are unique up to linear transformations.

Here we construct explicitly the optimal observables
for generic ambiguities in the reconstruction of the final
state. Such ambiguities can be either continuous, that is the
number of measured variables is smaller than the number
of variables required to specify the final state, or discrete,
that is a reconstructed event can originate from two or
more final states.

This work is organised as follows: In Sect. 2 we resume
the properties of optimal observables as given in [9]. In
Sect. 3 the optimal observables for generic ambiguities in
the reconstruction of the final state are discussed. In Sect. 4
we recall that the method can be applied iteratively to
determineparameters onwhich thedifferential cross section
depends non-linearly. We present our conclusions in Sect. 5.

2 Optimal observables

In this section we give a resumé of the definition and prop-
erties of optimal observables. As it is convenient to have an
illustrative example in mind we shall discuss the problem to
measure anomalous contributions to the differential cross
sections for the reactions e+e− → WW and γγ → WW .
But we emphasise that our considerations are neither re-
stricted to anomalous couplings nor to particular reactions.
The optimal-observables method can be applied to any re-
action where the differential cross section depends on a
certain number of small parameters, which we generically
denote by hi and which are to be estimated. Furthermore,
the method can be generalised to the case where the pa-
rameters to extract are not necessarily small [10]. Consider
now the reaction e+e− → WW or γγ → WW and let us
assume that we describe it in the framework of the SM
with the addition of small real anomalous constants hi.

In an experiment one measures the differential cross sec-
tion

S(φ) ≡ dσ/dφ , (1)

where φ denotes the set of all measured phase-space vari-
ables. For instance, the fully differential cross section of the
process e+e− → WW without transverse beam polarisa-
tion depends on five angles, which are in this case specified
by φ [5]. In the same way the spin-averaged fully differen-
tial cross section of γγ → WW with fixed photon energies
depends on five angles [20]. In case of e+e− → WW as
treated within a form-factor approach in [5] the anoma-
lous parameters hi are the 28 anomalous TGCs that pa-
rameterise deviations at the γWW and ZWW vertices
from the SM. In case of γγ → WW as treated within an
effective-Lagrangian approach in [20] the hi are the ten co-
efficients of certain dimension-six operators. Here non-zero
anomalous couplings do not only lead to anomalous three-
and four-gauge-boson couplings but also to deviations of
the gauge-boson–fermion couplings and of the gauge-boson

masses from their SM values. We distinguish between the
information from the total cross section σ =

∫
dσ and from

the normalised distribution S/σ of the events. Here we only
investigate how well anomalous couplings can be extracted
from the latter. It is possible to obtain constraints on these
parameters also from the measurement of σ; see Sect. 3.1
of [10]. Those considerations remain unaffected in the pres-
ence of ambiguities in the reconstruction of the final state.

Expanding S in the anomalous couplings one can write

S(φ) = S0(φ) +
∑

i

S1i(φ)hi + O(h2) , (2)

where S0(φ) is the cross section in the SM and the S1i(φ)
give the first-order modifications due to the anomalous
couplings. We assume S0(φ) and S1i(φ) to be calculated
from theory. Note that the variables φ need not specify
the final state completely. In the analyses [5, 14] of the
reaction e+e− → WW with one W decaying leptonically
and the other one into two hadronic jets it was assumed
that the jet charges cannot be identified, which results in
a two-fold ambiguity. In such cases S(φ) is not the fully
differential cross section – in our example it is the sum over
two final states. In a case with ambiguities of this or more
involved kind it is often not straightforward to calculate
S0(φ) and S1i(φ). But these quantities must be known
explicitly in order to construct the optimal observables.
This problem is our main concern in this paper and will
be addressed in the following section.

We now give a short resumé of the optimal-observables
method. One way to extract the parameters hi from the
measured distribution (2) is to look for a suitable set of
observables Oi(φ) whose expectation values

E[Oi] =
1
σ

∫
dφ S(φ) Oi(φ) (3)

are sensitive to the dependence of S(φ) on the couplings hi.
To first order in the anomalous couplings we have

E[Oi] = E0[Oi] +
∑

j

cijhj + O(h2) , (4)

with

E0[Oi] =
1
σ0

∫
dφ S0(φ) Oi(φ) , (5)

cij =
1
σ0

∫
dφ Oi(φ) S1j(φ) (6)

− σ1j

σ2
0

∫
dφ S0(φ) Oi(φ) ,

σ0 =
∫

dφ S0(φ) , (7)

σ1j =
∫

dφ S1j(φ) . (8)

Here E0[Oi] is the expectation value for zero anomalous
couplings, and cij gives the sensitivity of E[Oi] to hj .
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Solving (4) for the set of the hj we get estimators for the
anomalous couplings, whose covariance matrix is given by

V (h) =
1
N

c−1V (O) (c−1)T , (9)

where we use matrix notation. Here N is the number of
events, and

V (O)ij =
1
σ0

∫
dφ S0(φ) Oi(φ) Oj(φ) (10)

− E0[Oi] E0[Oj ] + O(h)

is the covariance matrix of the observables, which we have
expanded around its value in the SM. As observables
we choose

Oi(φ) =
S1i(φ)
S0(φ)

. (11)

From (6) and (10) one obtains for this specific choice of ob-
servables

V (O) = c + O(h) , (12)

and therefore

V (h) =
1
N

c−1 + O(h) . (13)

From (12) we see that for the observables (11) c is a symmet-
ricmatrix becauseV (O) is symmetric. The observables (11)
are “optimal” in the sense that for hi → 0 the errors (13)
on the couplings are as small as they can be for a given
probability distribution [9]. For details on this so-called
Rao–Cramér–Fréchet bound see for example [21]. Apart
from being useful for actual experimental analyses, the ob-
servables (11) thus provide insight into the sensitivity that
is at best attainable by any method, given a certain process
and specified experimental conditions. In case of one pa-
rameter this type of observable was first proposed in [17],
the generalisation to several parameters was made in [9].
Moreover, it has been shown that optimal observables are
unique up to a linear reparameterisation [10]. We further
note that phase-space cuts, as well as detector efficiency
and acceptance have no influence on the observables being
“optimal” in the above sense, since their effects drop out in
the ratio (11). This is not the case for detector-resolution
effects, but the observables (11) are still close to optimal
if such effects do not significantly distort the differential
distributions S1i and S0 (or tend to cancel in their ra-
tio). To the extent that they are taken into account in the
data analysis, none of these experimental effects will bias
the estimators.

When a set of events is calculated with a Monte-Carlo
generator and the events are then reconstructed like in
an experimental analysis the optimal observables (11) are
obtained directly in the measured variables φ. However
for theoretical studies, i.e. to estimate the sensitivity of
a certain reaction to anomalous couplings, and also for
experimental analyses often the analytical expressions of
the optimal observables (11) are required.

Frequently there are ambiguities in phase space, that
is to one value of the measured kinematic variables φ there

correspond two or more distinct final states (discrete ambi-
guities) or a bunch of final states (continuous ambiguities).
The calculation of S0(φ), S1i(φ) in (2) and in particular
of the observables Oi(φ) in (11) has then to be done with
some care as will be shown below.

3 Phase-space ambiguities

In principle there are plenty of possibilities to parame-
terise a final state in a reaction uniquely, for instance the
usage of angles or Cartesian coordinates, different choices
of reference frames etc. In an experiment one may either
be able to specify a final state of an event uniquely or
only with certain ambiguities. Here we discuss in detail
the case of discrete ambiguities, that is for each event one
only knows that it belongs to a group of two, three or more
final states. We also mention how to handle continuous
ambiguities, i.e. the case in which the number of measured
variables is smaller than the number of variables required
to specify the final state. An example of a discrete ambi-
guity is the two-fold one of the semileptonic final states in
e+e− → WW or in γγ → WW with fixed c.m. energy of
the two-photon system. Here one usually assumes that the
two hadronic jets cannot be associated unambiguously to
the quark and antiquark. Another more involved one occurs
in the reaction γγ → WW when the photons each obey
a Compton spectrum. Here, in addition to the ambiguity
above, another two-fold one arises from the reconstruction
of the neutrino momentum. This case is considered in [20].
The optimal observables (11) are now to be calculated in
the presence of such ambiguities.

We start from a particular set of phase-space variables χ
that specify the final state uniquely. The differential cross
section in terms of these variables we denote by

T (χ) ≡ dσ/dχ . (14)

The cross section for another choice of variables φ, that
may lead to the above ambiguities, is then given by

S(φ) =
∫

dχ δ(F (χ) − φ) T (χ) . (15)

The function F expressing the relation of φ to χ may take
the same value for different values of χ, that is for a given φ
the equation

F (χ) = φ (16)

may have several solutions χk ≡ χk(φ) with k = 1, 2, . . . In
general, the number of solutions to (16) may vary with φ. If
φ are the coordinates that can be measured of an event χ,
the set of final states χk consists of χ itself as well as
all final states that cannot be distinguished from χ by a
measurement of φ. Notice that in (15) we have assumed
that the number of components of the vectors φ and χ
are the same. In general there can be also continuous
ambiguities, that is the fully differential cross section is
specified by a larger number of variables than those that
can actually be measured. However this does not lead to any
further complications in the context of optimal observables.



500 O. Nachtmann, F. Nagel: Optimal observables and phase-space ambiguities

In fact, if the fully differential cross section is T̃ (χ, ξ)
where the final-state variables ξ cannot be measured the
generalisation of (15) is

S(φ) =
∫

dχdξ δ(F (χ) − φ) T̃ (χ, ξ) . (17)

If we define

T (χ) ≡
∫

dξ T̃ (χ, ξ) (18)

we again obtain (15). We can thus apply all formulae in
the remainder of this section also in case of discrete plus
continuous ambiguities. We remark that our analysis also
works if one or more of the phase-space variables take
discrete values as is the case for instance for spin indices.
For these variables integrals have to be substituted by sums
and δ-distributions by Kronecker symbols.

An integration and summation over part of the phase-
space variables as in (17) is, of course, performed when one
considers inclusive cross sections. Thus our discussion cov-
ers also this case. Clearly, then the normalisation integral∫

dφ S(φ) gives the cross section times the correspond-
ing multiplicity and in our formulae σ has to be read in
this way.

Coming back to (15) we have

S(φ) =
∑

k

|Jk|−1 T (χk(φ)) , (19)

where

Jk ≡ det
∂F

∂χ
(χk(φ)) (20)

is the Jacobian determinant taken at point χk. If F is
invertible, there is only one term in the sum for all φ
and (19) simplifies to

S(φ) =
∣∣∣∣ ∂F

∂χ

(
F−1(φ)

)∣∣∣∣
−1

T
(
F−1(φ)

)
. (21)

We expand the differential cross section:

T (χ) = T0(χ) +
∑

i

T1i(χ) hi + O(h2) . (22)

It follows that

S(φ) = S0(φ) +
∑

i

S1i(φ) hi + O(h2) , (23)

where

S0(φ) =
∑

k

|Jk|−1 T0(χk(φ)) , (24)

S1i(φ) =
∑

k

|Jk|−1 T1i(χk(φ)) . (25)

Note, again, that the number of terms in the sums (24)
and (25) can vary with φ. If φ – but not necessarily χ – are

coordinates that can be measured we have to define the
optimal observables from the expansion of S(φ) in (23):

Oi(φ) =
S1i(φ)
S0(φ)

. (26)

In the specific case where F is invertible going from χ to φ
is a mere change of coordinates and we obtain the same
optimal observables using either set of variables:

Oi(φ) =
T1i (χ)
T0 (χ)

∣∣∣∣
χ=F −1(φ)

. (27)

If there are ambiguities in the reconstruction but if we have
the same Jacobian J ≡ Jk for all k (which may nevertheless
depend on φ), J cancels in the numerator and denominator
of the observables (26):

Oi(φ) =
∑

k T1i (χk(φ))∑
k T0 (χk(φ))

. (28)

This is the case e.g. for the reaction e+e− → WW , where
one W boson decays into a quark–antiquark pair and the
other one into a lepton pair, if the charges of the two jets
in the final state cannot be identified [9]. If this is not the
case we must use the general expressions (24) to (26).

The covariance matrix of the observables (26) is now

V (O)ij =
1
σ0

∫
A

dφ S0(φ) Oi(φ) Oj(φ) (29)

− σ1iσ1j

σ2
0

+ O(h) ,

where

σ0 ≡
∫

A

dφ S0(φ) =
∫

B

dχ T0(χ) , (30)

σ1i ≡
∫

A

dφ S1i(φ) =
∫

B

dχ T1i(χ) , (31)

and the full kinematically allowed integration regions in
the coordinates φ and χ are denoted by A and B, re-
spectively. The integrals σ0 and σ1i can be performed in
either coordinates. Using χ no knowledge about ambigu-
ities in the reconstruction is necessary. The first term in
the expression of V (O) needs special care. We divide the
integration region A into parts An with n = 1, 2, . . ., such
that for φ ∈ An there are n solutions χk to (16). The
domains of B corresponding to the An we denote by Bn;
see Fig. 1. We subdivide Bn into n appropriate regions Bnk

with k = 1, 2, . . . , n, such that χk ∈ Bnk. This subdivision
is certainly not unique. We have

Hij ≡
∫

A

dφ S0(φ) Oi(φ) Oj(φ) (32)

=
∫

A

dφ
S1i(φ)S1j(φ)

S0(φ)

=
∑
n≥1

∫
An

dφ
S1i(φ)S1j(φ)

S0(φ)
.
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Fig. 1. Definition of integration areas

Expressed in terms of integrals over χ we get

Hij =
∫

B1

dχ
T1i(χ) T1j(χ)

T0(χ)
(33)

+
∑
n≥2

∫
Bnpn

dχ |J(χ)| S1i (F (χ)) S1j (F (χ))
S0 (F (χ))

,

and also

Hij =
∫

B1

dχ
T1i(χ) T1j(χ)

T0(χ)
(34)

+
∑
n≥2

1
n

∫
Bn

dχ |J(χ)| S1i (F (χ)) S1j (F (χ))
S0 (F (χ))

,

where we have from (24) and (25) for χ ∈ Bn

S0 (F (χ)) =
n∑
k

|J (χk(F (χ)))|−1
T0 (χk(F (χ))) , (35)

S1i (F (χ)) =
n∑
k

|J (χk(F (χ)))|−1
T1i (χk(F (χ))) , (36)

J(χ) = det
∂F

∂χ
(χ) . (37)

One of the values χk(F (χ)) in (35) and (36) is, of course,
identical to χ. In (33) one can choose for each n any natural
number pn with 1 ≤ pn ≤ n. These choices correspond to
different parameterisations of the integration regions An

but leave the integrals unchanged. Therefore one may sum
over all possible choices and divide by n, which leads to (34).
The quantities Hij may be calculated either in the form (33)
or (34). Notice that the form (34) has the advantage that
one only has to know where in the integration region for χ
there are how many solutions to (16), but one does not have
to specify Bn1, Bn2, etc. In certain cases the integrals for
n ≥ 2 in (33) or (34) may be simplified. For example let A′

n

with n ≥ 2 be the part of An where the Jacobians J(χk(φ))
are the same for all k. The Jacobian in this region may
nevertheless depend on φ. The region of An where they
are not the same for all k we call A′′

n. The corresponding
regions of Bn are denoted by B′

n and B′′
n. We write the

integrals in (34) as∫
Bn

dχ =
∫

B′
n

dχ +
∫

B′′
n

dχ . (38)

Then, in the integrals over B′
n the Jacobian cancels and

we obtain the following expression for the integral in the
covariance matrix (29):

Hij =
∫

B1

dχ
T1i(χ) T1j(χ)

T0(χ)
(39)

+
∑
n≥2

1
n

∫
B′

n

dχ

×
∑n

k T1i (χk(F (χ)))
∑n

l T1j (χl(F (χ)))∑n
m T0 (χm(F (χ)))

+
∑
n≥2

1
n

∫
B′′

n

dχ |J(χ)| S1i (F (χ)) S1j (F (χ))
S0 (F (χ))

,

with S0(F (χ)) and S1i(F (χ)) as in (35) and (36), respec-
tively.

4 Iterative analysis in the non-linear case

In this section we recall briefly that the use of optimal
observables is not restricted to a phase-space distribution
depending only linearly on parameters hi which are to be
estimated. In other words, the higher-order terms in hi

in (2) can be handled. This has been discussed extensively
in [10]. We recall here only one practical procedure one
can follow.

Suppose we have a theoretical expression for the differ-
ential cross section (2) which can be expanded in the hi:

S(φ) = S0(φ)+
∑

i

S1i(φ) hi +
∑
ij

S2ij(φ) hihj + . . . (40)

With given data an estimate of the hi has to be made. The
procedure proposed in [10] is then as follows. In the first
step the terms of second and higher order are neglected
and one follows the procedure of estimating the hi by
the optimal observables (11). Suppose that this gives as
estimates for the parameters the values h̃i. In the second
step one sets

hi = h̃i + h′
i (41)

and substitutes this for S(φ) in (40). This gives

S(φ) = S̃0(φ)+
∑

i

S̃1i(φ) h′
i+

∑
ij

S̃2ij(φ) h′
ih

′
j+. . . , (42)

where

S̃0(φ) = S0(φ) +
∑

i

S1i(φ) h̃i (43)

+
∑
ij

S2ij(φ) h̃ih̃j + . . . ,

S̃1i(φ) = S1i(φ) + 2
∑

j

S2ij(φ) h̃j + . . . , (44)

and so on.
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Now one applies the optimal-observables method to
estimate the h′

i, neglecting terms of second and higher
order in the h′

i in (42). The new optimal observables are

Õi(φ) =
S̃1i(φ)

S̃0(φ)
. (45)

Let h̃′
i be the estimates for these parameters obtained in

this way. The improved estimate for the original parameters
is then h̃i + h̃′

i.
This procedure can be iterated. It was tested in [19] in

a Monte-Carlo study for the analysis of TGCs at LEP2.
Parameters hi – not necessarily small – were assumed and
Monte-Carlo data generated according to the correspond-
ing distribution (40) which for this case contained linear
and quadratic terms in the hi. The non-linear optimal-
observables analysis was then performed as mentioned
above. It turned out that after a few, typically three, itera-
tions the input values for the hi were obtained back within
their correct statistical errors.

Clearly, the phase-space ambiguities are to be treated
in exactly the way discussed in Sect. 3 also for the case of
a non-linear analysis.

5 Conclusions

For electroweak precision measurements at a future LC it
will be important to check the validity of the SM (or per-
haps another theory) with the highest possible precision.
To this end optimal observables are a convenient means
because parameters can be determined with minimal er-
rors as allowed by a theorem from mathematical statistics
without neglecting correlations between any of them. Such
observables have for instance been applied to the reaction
e+e− → WW in [9,10] with a form-factor approach to the
γWW and ZWW vertices. Effects of beam polarisation
to the same process were analysed in [5, 14]. However in
the mentioned studies the final state was assumed to be
known either exactly or up to a two-fold ambiguity of a
very simple type. It was possible to add the respective
terms of the differential cross section in order to construct
the optimal observables. In this paper we have discussed
the calculation of optimal observables for the case of an
arbitrary reaction with generic ambiguities in the recon-
struction of the final states. This is the case e.g. in the
reaction γγ → WW where the photons are not monochro-
matic but have a Compton-energy spectrum [20]. In the
most general case the expressions for the optimal observ-
ables and the covariance matrix are somewhat complicated,
basically because they contain the Jacobian determinant
of the parameter transformation. However simplifications
occur in various special cases, for example if the Jacobian
determinant is a constant in phase space and therefore can-
cels in certain ratios and integrals. Using our results one
is able to study the best statistically achievable sensitivity
to a set of parameters in a reaction given a certain event
number, if there are ambiguities in the reconstruction of the
final state. Such studies give important information on the

capabilities of future machines and on how to choose the
experimental settings like polarisations in an optimal way
for physics studies. Apart from that optimal observables
are an ideal tool for the analysis of experimental data. In
either case one often needs explicit analytical expressions
of the optimal observables. To this end we have collected
here the necessary formulae for the case when the final state
cannot be fully reconstructed from the measured variables.
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